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ABSTRACT

Microstructural influences on ceramic strength become significant at
small flaw sizes. These influences are readily quantified by strength
testing with controlled indentation flaws. Data are presented here for
alumina and glass~ceramic specimens broken under both inert and fatigue
conditions. As the flaw size is systematically reduced there is a
tendency to a reduction in strength relative to that predicted from
macroscopic toughness measurements, reflecting R-curve behavior. This
tendency is critically dependent on the microstructural detail, e.g.
presence of glassy phases at the grain boundaries in the aluminas.
However, the fatigue susceptibility is found to be relatively insensitive
to the microstructural influence over the same flaw-size range.

A fracture mechanics framework for incorporating a "microstructural
stress intensity factor" is outlined. The description establishes a
proper basis for extrapolating fracture data from traditional large-scale
crack specimens into the domain of naturally occurring flaws. Direct
observations of the indentation crack response during actual strength
testing indicates that the principal mechanism of the microstructural
"toughening" effect is crack restraint by grain-localized ligamentary
"bridging" behind the advancing front.

1. INTRODUCTION .

It is now well known that the fracture properties of brittle
ceramics can be strongly influenced by the material microstructure.1 It
becomes pertinent to ask whether toughness and crack velocity data on
well-developed, macroscopic fracture specimens can be extrapolated to the
domain of strength-controlling microscopic flaws. At issue is the
long-standing Griffith strength formalism on which all modern-day
fracture mechanics design is based.
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In confronting this issue we are led to the phenomenon of crack-
resistance, or R-curve, behavior. At very small crack sizes relative to
the scale of the microstructure the toughness is expected to be
determined simply by a bulk cleavage or grain boundary interface energy,
depending on whether the fracture mode is transgranular or intergranular.
At large crack sizes the toughness can be considerably greater than these
intrinsic levels, representative of the polycrystalline aggregate. Hence
the toughness is no longer a constant material parameter, but becomes
some function of crack size ~ the R-curve. How, then, may we determine
such toughness characteristics experimentally, and thence incorporate
these characteristics into a formal fracture mechanics description of
strength? What effect does R-curve behavior have on fatigue properties,
in particular on the effective crack velocity exponent? At the more
fundamental level, what are the underlying physical processes responsible
for the R-curve, and how do these processes relate to the material
microstructure? The future success in developing ultra-strength ceramics
surely rests with the answers to questions like these.

In this paper we survey the results of recent studies in these
laboratories -5 aimed at elucidating the nature of R~curve behavior in
selected aluminas and glass-ceramics, materials in which the elements of
the microstructure are reasonably well understood. In our experiments
indentation flaws are introduced into strength bars, so that the size of
the crack which leads to failure may be varied systematically. This
conveniently allows us to bridge the gap in scale of fracture from the
traditional macroscopic test specimen down to the microstructurally-
determined flaw. Moreover, the origin of failure is now predetermined,
so we can follow the crack evolution directly during an actual strength
test. As we shall see, these experiments provide new insights into the
fracture mechanisms. A stress intensity factor for the microstructural
influence on the net crack driving force is thereby determined, at two
levels of rigor: first, semi-empirically (i.e. without recourse to a
specific R-curve mechanism), sufficient to account for the trends in both
inert and dynamic-fatigue strength data; second, in terms of a specific
physical model of distributed restraining forces behind the crack front.
The restraining forces in the latter instance are associated with the
formation of microstructurally-localized ligaments across the separating
fracture interface.

2. EXPERIMENTAL

We have conducted a test program on several cer’amics.z'3 Here we
present results on three representative aluminas - single crystal
sapphire, polycrystal nominally "pure" (Coors Vistal), polycrystal with
1% grain boundary glassy phase (Freidrichsfeld F99) - and two glass-—
ceramics - low expansion (Corning C9606, Pyroceram) and machinable
(Corning C9658, Macor). Specimens were prepared in disk or bar form
suitable for strength testing.

Most of the specimens were indented with a Vickers diamond at the
centers of the prospective tensile faces. Some specimens were left
unindented as controls. The range of contact loads covered was 1 to
300 N. The strengths of the specimens were determined in biaxial or
four-point flexure. These flexure tests were run in either inert
environment (silicone o0il), to determine the toughness characteristics,2
or fatigue environment (water), to determine crack velocity
characteristics.

Optical microscopy was used to examine the fracture patterns, both
after and during the testing to failure. The post~indentation

24



examination was needed to confirm the indentation flaw as the source of
failure. It also provided useful information on the crack morphology.
However, the most revealing observations were those made in situ, as the
flexural loading was being applied. For this latter purpose, a special
loading facility was attached directly to the stage of an inverted
microscope, with the indented specimen surface facing downward, allowing
the entire crack evolution to failure to be monitored. A video recording
attachment was extremely beneficial in helping to interpret some of the
seemingly complex features of the crack growth behavior enroute to
failure.

3. INTERPRETATION AND DISCUSSION OF RESULTS

3.1 Inert Strengths and R-Curves

Inert strength data are shown as a function of indentation load,
oy(P), for the aluminas and glass-ceramics in Figs. 1(a,b,c) and 2(a,b),
respectively. Individual data points represent means and standard
deviations (evaluated in logarithmic coordinates) for breaks at
indentation flaws at each prescribed load. Hatched regions at left of
each plot represent strengths of the unindented controls. The solid
curves are theoretical fits to the data (see below).

It is immediately apparent, even without a detailed fracture
mechanics analysis, that there is disparate behavior in the strength
responses within each material class. This is seen most clearly in the
alumina data of Fig. 1. The sapphire data plot more or less in
accordance with the simple power-law relation ¢ « P'1/3 from "ideal"
indentation theory o7 (i.e. with microstructure terms excluded). Insofar
as the proportionality factor in this relation involves the material
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Figure 2. Inert strength as function of indentation load for two glass-
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toughness (see Eq. 3 below), we may regard the linear fit in this case as
an extrapolation from large-scale crack resistance data. The data for
the polycrystalline aluminas show indications of a low-load "saturation"
in strength levels, much more so in the Vi than in the F99 material. In
these cases the extrapolations from macroscopic toughness evaluations,
represented as the inclined broken line asymptotes, overestimate the
strengths in the small-flaw region. The need to include a
microstructural term into the strength analysis is evident.

The starting point for such an analysis is an appropriate stress
intensity factor. For an indentation crack of size c¢, formed at contact
load P and subsequently subjected to a bending stress 05, We may write

K

K, + Kr + K

a m

= yo,e'/2 + xpre3/2 4 K (c,q,..... ) =T D)

where the equality with intrinsic toughness T (referred to elsewhere as
Ko ) denotes a state of equilibrium (pertinent to inert %egting
conditions). Here Y is a crack geometry constant (= 2/ / , X is a
residual contact field parameter, and d is some characteristic dimension
of the crack-microstructure interaction. The object of the exercise is
to determine K (cydy....) explicitly for given microstructural systems.
Then we may solve Eq. 1 for the critical stress O at failure (i.e. the
inert strength) by imposing the instability requirement dK/dc = 0.

In the absence of any knowledge as to the specific mechanism of
crack~-microstructure interaction we can only proceed by semi-empirical
representation of Km. This was effectively the approach adopted in
Ref. 2 (see also Ref. 8). 1In terms of the current terminology, we may
write the microstructural functional from that earlier work in the form,
for ¢ 2 d,

Ky = - (u@/a3/2)[1 - (d/¢)3/2] (2)
where Q is some microstructurally associated "force" (real or effective)
and y is a constant. We note that K, =0 at ¢ = d, designating a cutoff
crack size below which the toughness is determined exclusively by the
intrinsic value T. At ¢ > d, Km becomes increasingly negative so that
the toughness, insofar as it may be considered to be augmented by this
term (i.e. T-Km in Eq., 1), appears as a rising function of crack size.
It is Eq. 2 which provides the basis for the curve fits in Figs. 1 and 2.

Once we have an explicit expression for Eq. 1, we should be able to
invert the solution to determine the effective R-curve (or perhaps more
strictly, in our present notation, T -curve) characteristics from the
Om(P) data. Indeed, we can carry out such an inversion for individual
data points without a full solution, by calculating an "apparent"
toughness from a base formula representative of the microstructure-free
state (i.e. with Kn = 0 in Eq. 1). Thus we can show that

T = n(o,p!/3)3/4 (3)

where n = n(y,x) = 0.88 is determined by experimental calibration,9 and
where the asterisk is to signify that we intend to use Eq. 3 outside the
strict realms of its applicability (which is along the linear asymptotes
of slope -1/3 in Figs. 1 and 2). In this way, we plot the apparent
toughness vs load data for the aluminas and glass-ceramics in Figs. 3 and
4, respectively. The R-curve tendencies are clearly illustrated in these
plots. Particularly noteworthy is the way in which the data for Vi
alumina in Fig. 3 cross those for the other two aluminas, indicating
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Figure 3. Apparent toughness (evaluated from Eq. 3) as function of
indentation load for the aluminas represented in Fig. 1.
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that toughness evaluations made in the macroscopic region can be totally
misleading in assessing the relative merits of different materials at the
microstructural flaw level. The solid curves in these plots are again
fits using the emBirical function Eq. 2 to obtain analytical solutions to
T"(P) from Eq. 1.

3.2 Fatigue Strengths and Crack Velocity Exponents

Figures 5 and 6 show dynamic fatigue strength as a function of
stressing rate, of(éa), for those materials which displayed the
strongest R-curve behavior in the preceding subsection, viz. Vi alumina
and Macor glass-ceramic. The results are obtained for two indentation
loads, towards opposite ends of the R-curves, for each material. Data
points represent means and standard deviations (log coordinates) at each
stressing rate. Horizontal broken lines at right are inert strength
limits at the appropriate loads. The solid lines are linear fits in
accordance with theoretical prediction (below), notwithstanding some
apparent curvature in the plots.

We see that, despite the extreme R-curve behavior shown by these two
materials, there is no significant sensitivity of the fatigue
susceptibility to crack size; the curves for different values of P in
Figs. 5 and 6 are closely parallel.

An analytical basis for explaining this insensitivity can be
established by combining the stress intensity factor K(c¢) in Eq. 1 _(in
the suberitical region K < T) with a crack velocity function v(K),3 here
assumed to be of standard power-law form

v = AK", ()
The resultant formulation is a differential equation which, for constant

6a and empirical K, function in Eq. 2, has a solution of the same form
as that for Griffith-like flaws,

op = (it (n (5)
differing only in the values of the exponent and intercept terms (hence
the prime notation). It turns out that the exponent n' is related to the
true crack velocity exponent n via the simple transformation equation

n' = 3n/4 + 1/2 ‘ (6)

totally independently of P. This accounts for the parallelism between
the curves in Figs. 5 and 6. The intercept A' does turn out to be
dependent on P, however, and this needs to be allowed for in any complete
description of fatigue properties.

3.3 Direct Observations of Crack Growth in Strength Specimens

Observations of the crack response to the applied loading provide
valuable clues to the mechaﬁism responsible for the rising R-curve
behavior described earlier. We have looked at all the materials
represented in the strength data plots, but have focussed particularly on
the Vi alumina, the material with the strongest effect. Optimal
conditions for microscopy were obtained by polishing the surfaces down to

#There are several subtleties in writing the crack velocity function this
way for materials with rising R-curves. These subtleties will be
explored elsewhere.
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0.3 um Alzo paste, thermally etching to reveal the grain boundaries, and
metal coating to improve the reflectivity.

The first microscopy examinations made were of the final failure
patterns. Some of the general features of these patterns are evident in
Fig. 7, which shows the immediate region around the indentation in a
fractured Vi alumina disk. It is seen that the fracture is almost
exclusively intergranular, once the initial radial cracks traverse the
first grains containing the indentation impression. This intergranular
mode was evident in all the aluminas we tested, regardless of degree of
R-curve behavior. This is not unexpected, of course, in view of the
distinct tendency for the T (P) polycrystal data to cross below the
single crystal data at low P in fig. 3. An analogous "intergranular"
mode was observed in the glass-ceramics, with matrix cracks propagating
around rather than straight through the larger second~phase
crystallites. 0,11 In all cases well~-defined primary cracks were
observed, with no obvious subsidiary bifurcation or microcracking.

Post~test inspections in Vi revealed one further, telling piece of
information. At failure (marked by an abrupt drop in applied stress to
zero) the radial cracks propagated to the edges of the specimens.
Continuous traces of these cracks could be followed along both top and
bottom surfaces. Yet the specimens did not fragment - some additional
applied force was necessary to separate the pieces. It appeared that
there must be remnant links of some kind across the "broken" interfaces.

It was in this connection that the in situ observations were most
revealing, especially on the Vi alumina. Tests were run at slow
stressing rates, in air, to allow each step in the crack growth sequence
to be followed carefully. In the initial stage of loading the cracks
remained quite stationary. Then one arm of the radial crack pattern
extended abruptly, typically over 5 to 10 grain diameters. Further
loading produced more such jumps, either in the same or adjacent arms,
with increasing frequency, until failure occurred. Similar initiations
were occasionally observed from prominent '"natural" f‘laws.12 The picture
we conjure up is one of highly stable, but erratic, growth prior to
failure.

The stable growth comes as no surprise, since it is well established
that the residual stress term K, in Eq. 1 (by virtue of its inverge
dependence on crack size) manifests itself in precisely this way. But
what causes the discrete jump-arrest sequences? Closer inspection of the
separating crack behind the main advancing front provides important
clues. There are points where the crack appears to be disjointed on the
microscale, as though the main front has had some difficulty in deciding
which way it might propagate around a certain grain (or second-phase
particle). An extreme example is shown in Fig. 8. Rarely did the
distance between the adjacent crack segments exceed more than one or two
grain diameters (including in the subsurface direction, as indicated by
interrupting the test and viewing in transmitted light). Independent
observations of such regions by Swanson in these laboratories1 have
demonstrated the continued evolution of the crack segments at distances
greater than 1 mm behind the main front in Vi alumina. This evolution
ceases only when one of these segments runs back into the plane of the
other, at which point the opposing crack walls completely separate. 1In
"favorable" cases the two segments link up simultaneously, causing grain
"pop-outs" (e.g. in upper left of crack trace, Fig. 7).

We are led to conclude that the crack is "hung up" by grain-

localized, restraining ligaments distributed over the separating crack
interface. This conclusion is consistent with the "memory effect"
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Figure 7. Optical micrograph of Vickers indentation site in a fractured
Vi alumina disk. Note well-defined primary, intergranular
crack patterns.

Figure 8. Micrograph showing apparently disjointed crack segments along
main fracture path in Vi alumina.
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reported by Knehans and Steinbrech;‘" that any previous progression up an
R-curve can be negated by cutting away material from the walls of the
extended crack (e.g. by sawcutting). We now have an experimental basis
for explaining the R-curves of Fig. 3 more rigorously.

4, BRIDGING MODEL OF R~CURVE CHARACTERISTICS

We have indicated in our discussion of Eq. 1 the need for explicit
knowledge of the microstructure-associated term K (c,....) in any
quantitative fracture mechanics analysis of the R-curve phenomenon in
ceramics. This need is paramount in the context of design: we have
already alluded (notably in our consideration of Fig. 3) to the potential
dangers of extrapolating toughness data into the domain of" strength-
controlling flaws. We have thus far been restricted to the use of a
semi-empirical representation, Eq. 2, which, although accounting well
enough for the trends in the strength data, provides little physical
insight into the material element in the toughening process. Clearly, we
have to incorporate basic information on the specific crack resistance
mechanism into our microstructural modelling.

The direct crack observations in Sect. 3.3 suggest that we should
consider a model based on the restraining effect of grain-localized
"bridges" across the primary crack interface. There ig well-established
precedent in the concr'et,e15'17 and ceramic composites1 literature for
this kind of modelling. Our aim in this section is to outline how one
sets up the fracture mechanics, leaving the details of the calculations
to a separate paper.

Before proceeding with our bridging model, however, it is well that
we should give reasons for discounting other mechanisms which have been
proposed to account for apparent toughening ef‘fects.1 The most vaunted
of the Rrcurve mechanisms, transformation toughening, does not operate in
the materials studied (certainly not in the near-monophase aluminas).
Models based on crack geometry alone, e.g. deflection,19 appear incapable
of accounting for the long range of the R~curve effect, e.g. as
manifested by the gradual transition in strength behavior of Figs. 1 and
2. Moreover, materials which show widely different R-curve
characteristics (e.g. F99 and Vi aluminas) have remarkably similar
(intergranular) fracture morphologies. Explanations invoking internal
stresses (such as those due to thermal expansion mismatch)20 appear to be
able to account for a lower toughness at small indentation loads, where
the microscale cracks are presumed to feel the grain boundary tensile
forces to full effect. But in the large-load limit the crack should
average out the alternate local tensile and compressive stresses, tending
ultimately to the grain boundary toughness; thus, since the grain
boundary is weaker than the matrix single crystal (for otherwise the
fracture would be trgnsgranular), we are unable to account for the
crossing of the Vi T (P) curve above the sapphire curve in Fig. 3.
Finally, there is the possibilitY of a microcracking process zone which
grows steadily with crack size;2 as indicated in Sect. 3.3, we saw no
evidence for any such zone. :

Consider now the model shown schematically in Fig. 9. We suppose
that there are bridging ligaments which exert interfacial closure forces
Fi(x,z) behind the advancing crack t%g. It is assumed, as in the case of
fiber-reinforced ceramic composites, that these forces can be
considered to be continuously distributed, Fi(x,z) = °1(x) d2, once the
crack extends beyond the first bridges, where d is the mean spacing
between bridging sites. This assumption represents a compromise between
retention of an element of discreteness and mathematical tractability.
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Figure 9. Model of grain-localized crack bridging mechanism. Grains

behind main crack front remain partially attached to both sides
of separating interface, thereby exerting closure forces Fi(u)
on the crack. When crack segment (see Fig. 8) runs around one

side of grain ligament the main crack separates completely,
Fi(u) goes to zero. If segment runs around both sides
. simultaneously, grains are detached from surface.

Then we may resort to standard Greens function solutions for the stress
intensity factor.<2 In the case of penny-like cracks pertinent to the
indentation geometry we have (treating closure forces as positive here)

Kp = - (w/c1/2) fc 05 (x) x dx/(c2—x2)1/2. 7))
d

Unfortunately, we do not know the functional dependence ci(x)
a priori, so we have to make some approximations. A convenient ploy is
to make use of Sneddon's equation for the wall openin§ displacements of
traction-free, uniformly loaded crack (plane str'ess)2

ulx,e) = (yk/Ee'/2)(c2-x)1/2 | (8)

None of the conditions for validity of this expression are strictly met
here, but this _is not expected to reflect strongly in the material
dependencies.18 Then for equilibrium cracks (K = T), Egs. 7 and 8
combine to give

q,
Ky = - & MO (9)
o

The problem is therefore reduced to determining the force-separation
function for ligament rupture, which of course is dependent on the
details of the rupture process.

Once oi(u) has been determined, the requisite stress intensity
factor Km(c,d,....) may be evaluated. We note that the crack-size
dependence enters via the upper limit in Eq. 9 (in conjunction with
Eq. 8). To this point our evaluations of Eq. 9 have been restricted to

a
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trial functiogs o;{u), of the kind proposed in the analysis of concrete
f‘r‘acture.15’1 There are some encouraging trends emerging from our
preliminary calculations, however. Thus we find that the Km(c) function,
although dependent on the choice of the force-separation curve, is in all
cases monotonically increasing (indicating that Eq. 2 does at least
contain the essence of the crack-size influence). Also, by virtue of the
low limit cutoff in Eq. 7 (below which the toughening mechanism is not in
operation), the calculations lead to the prediction of the same kind of
radial crack pop~in behavior as observed in the indentation-

strength experiments earlier (Sect. 3.3). On the other hand, a full
understanding of the role of material properties, apart from E and T in
Eq. 9, awaits further development of the micromechanics of ligament
rupture (via oi(u)). Only then can we expect to account for such factors
as grain boundary phase (as is so clearly manifest in the contrasting
R-curves for Vi and F99 aluminas in Fig. 3, Sect. 3.1), grain size, etc.

5. CONCLUSIONS

(i) Indentation-strength techniques provide a powerful methodology for
analyzing the dependence of toughness and fatigue properties of brittle
ceramics on crack size.

(ii) Microstructural influences are strongly felt in the inert strength
data, reflecting R-curve behavior. They have relatively no effect on the
slopes of the dynamic fatigue plots (at least in the crack-size range
covered here).

(iii) The experimental R-curves depend sensitively on the microstructural
detail, e.g. grain boundary phase.

(iv) Direct observations of the crack evolution to failure suggest that
"toughening” in the aluminas and glass-ceramics is due to the closure
effect of unruptured grain-scale ligaments behind the main crack front.
The basis of a fracture mechanics description of this process is
outlined.
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